A Constant-Time Algorithm for Vector Field SLAM using an Exactly Sparse Extended Information Filter

نویسندگان

  • Jens-Steffen Gutmann
  • Ethan Eade
  • Philip Fong
  • Mario E. Munich
چکیده

The constraints of a low-cost consumer product pose a major challenge for designing a localization system. In previous work, we introduced Vector Field SLAM [5], a system for simultaneously estimating robot pose and a vector field induced by stationary signal sources present in the environment. In this paper we show how this method can be realized on a low-cost embedded processing unit by applying the concepts of the Exactly Sparse Extended Information Filter [15]. By restricting the set of active features to the 4 nodes of the current cell, the size of the map becomes linear in the area explored by the robot while the time for updating the state can be held constant under certain approximations. We report results from running our method on an ARM 7 embedded board with 64 kByte RAM controlling a Roomba 510 vacuum cleaner in a standard test environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exactly Sparse Extended Information Filters for Feature-based SLAM

Recent research concerning the Gaussian canonical form for Simultaneous Localization and Mapping (SLAM) has given rise to a handful of algorithms that attempt to solve the SLAM scalability problem for arbitrarily large environments. One such estimator that has received due attention is the Sparse Extended Information Filter (SEIF) proposed by Thrun et al., which is reported to be nearly constan...

متن کامل

New Adaptive UKF Algorithm to Improve the Accuracy of SLAM

SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...

متن کامل

Simultaneous Localization and Mapping with Sparse Extended Information Filters

In this paper we describe a scalable algorithm for the simultaneous mapping and localization (SLAM) problem. SLAM is the problem of acquiring a map of a static environment with a mobile robot. The vast majority of SLAM algorithms are based on the extended Kalman filter (EKF). In this paper we advocate an algorithm that relies on the dual of the EKF, the extended information filter (EIF). We sho...

متن کامل

Tradeoffs in SLAM with Sparse Information Filters

Designing filters exploiting the sparse information matrix for efficiently solving the simultaneous localization and mapping (SLAM) problem has attracted significant attention during the recent past. The main contribution of this paper is a review of the various sparse information filters proposed in the literature to date, in particular, the compromises used to achieve sparseness. Two of the m...

متن کامل

D-SLAM: A Decoupled Solution to Simultaneous Localization and Mapping

The main contribution of this paper is the reformulation of the simultaneous localization and mapping (SLAM) problem for mobile robots such that the mapping and localization can be treated as two concurrent yet separated processes: D-SLAM (decoupled SLAM). It is shown that SLAM with a range and bearing sensor in an environment populated with point features can be decoupled into solving a nonlin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010